

Modulhandbuch 2. Semester

Masterstudiengang Erneuerbare Energien Management (MA EEM)

Modulcode	Modulbezeichnung	Zuordnung	
MNGE1010	Technoökonomische Bewertung von Energiesystemen	MA	
MEEM2010	Studiengänge • Nachhaltige Gebäude- und Energiesysteme • Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	IVIA	

Modulverantwortlich	Prof. DrIng. Konstantin Lenz
Modulart	Pflichtmodul
Angebotshäufigkeit	Sommersemester
Regelbelegung/Empf. Semester	MA NGES: 1. Semester; MA EEM: 2. Semester
Credits (ECTS)	5
Leistungsnachweis	Prüfungsleistung
Angeboten in der Sprache	Deutsch
Voraussetzungen für dieses Modul	
Dieses Modul ist Voraussetzung für	
Moduldauer	1 Semester
Notwendige Anmeldung	
Verwendbarkeit des Moduls	

Le	hrveranstaltung	Dozent/-in	Art	Teilnehm. (maximal)	Anz. Kurse	sws	ECTS	Work- load
1	Technoökonomische Bewertung von Energie- systemen	Prof. DrIng. Konstantin Lenz	Seminar	25	1	4	5	150
					Summe	4	5	150
Lehrleistung pro Semester in SWS				4	•			

Qualifikationsziele	Die Lehrveranstaltung verknüpft die technischen und ökonomischen Aspekte von Energiesystemen.
	Fach- und Methodenkompetenz Die Studierenden erlernen technische und ökonomische Aspekte insbesondere von Erneuerbare-Energie- und Wasserstoffsystemen. Dies wird in den Gesamtkontext der Energiewende gestellt.
	Handlungskompetenz Die Studierenden werden in die Lage versetzt, ökonomische Auslegungs- und Wirtschaftlichkeitsberechnungen für Energieanlagen durchzuführen. Dies wird in Fallstudien vertieft.
	Sozialkompetenz keine

Vorleistung(en)	
Modulprüfung	Belegarbeit
Teilprüfung(en)	
Benotungsart	deutsche Bewertung von 1 bis 5
Wichtung für die	MA NGES: 6,1
Gesamtnote in %	MA EEM: 4,3

Modulcode Modulbezeichnung		Zuordnung	
MNGE1010	Technoökonomische Bewertung von Energiesystemen	MA	
MEEM2010	Studiengänge • Nachhaltige Gebäude- und Energiesysteme • Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	IVIA	

Einzelveranstaltung	Technoökonomische Bewertung von Energiesystemen
Dozent/-in	Prof. DrIng. Konstantin Lenz

Workload der LV	150 Stunden	
	Vorlesungen	
Präsenzzeit	Seminare/Übungen	60 Stunden
	Übungen mit Laborbetrieb	
	Belegbearbeitung	30 Stunden
	Vor-/Nachbearbeitung	30 Stunden
Selbststudienzeit	Prüfungsvorbereitung	
	Selbststudienzeit	30 Stunden
	Sonstiges	

Inhalte	- Einführung in die Energie- und Technoökonomie					
	- die Energiewende					
	- energiepolitische Rahmenbedingungen					
	- Grundlagen der Investitionsrechnung					
	echnoökonomische Auslegung vornehmlich von Erneuerbare-Energie-Anlagen					
	und Wasserstoffsystemen					
	Anwendung der Methodiken in Fallstudien					
	Absicherung von Wetterrisiken					
	Anwendung von Wetterderivaten und Wetterabsicherungen; Fallstudien					
	- die Zukunft der Energieversorgung					
Literatur	- Erdmann: Energieökonomik. Theorie und Anwendungen. Springer 2008.					

Modulcode	Modulbezeichnung	Zuordnung	
MNGE1020	Ökologische Bilanzierung und Life-Cycle Analysis	MA	
MEEM2020	Studiengänge • Nachhaltige Gebäude- und Energiesysteme • Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	IVIA	

Modulverantwortlich	Prof. DrIng. Sven Steinbach
Modulart	Pflichtmodul
Angebotshäufigkeit	Sommersemester
Regelbelegung/Empf. Semester	MA NGES: 1. Semester; MA EEM: 2. Semester
Credits (ECTS)	3
Leistungsnachweis	Prüfungsleistung
Angeboten in der Sprache	Deutsch
Voraussetzungen für dieses Modul	
Dieses Modul ist Voraussetzung für	
Moduldauer	1 Semester
Notwendige Anmeldung	
Verwendbarkeit des Moduls	

L	ehrveranstaltung	Dozent/-in	Art	Teilnehm. (maximal)	Anzahl Kurse	sws	ECTS	Work- load
1	Ökologische Bilanzierung und Life-Cycle Analysis	Prof. DrIng. Sven Steinbach	Seminar	25	4	2	3	90
					Summe	2	3	90
	Lehrleistung pro Semester in SWS					2		

Qualifikationsziele	Fach- und Methodenkompetenz Die Studierenden kennen die Einsatzbereiche der Ökobilanz und können deren Stärken und Schwächen einordnen. Sie kennen die Methoden der CO ₂ -Bilanzierung und der ökologischen Lebenszyklusanalyse. Sie sind in der Lage, Ökobilanzen von Gebäuden zu bewerten.
	 Handlungskompetenz historische und aktuelle Entwicklung der internationalen und nationalen Klimapolitik methodische Grundlagen der Ökobilanzierung von Gebäuden Bezug zu Nachhaltigkeitszertifizierungen und Förderungen Bewertung des Treibhauspotenzials unterschiedlicher Varianten der Gebäudetechnik und Baukonstruktion Einführung in Berechnungswerkzeuge und Datenbanken zur Ökobilanzierung
	Sozialkompetenz Teamfähigkeit, da die zu erstellenden Energiekonzepte in Kleingruppen bearbeitet werden müssen

Vorleistung(en)	
Modulprüfung	Belegarbeit, 70 %; Präsentation, 30 %
Teilprüfung(en)	
Benotungsart	deutsche Bewertung von 1 bis 5
Wichtung für die	MA NGES: 3,7
Gesamtnote in %	MA EEM: 2,6

Modulcode	Modulbezeichnung	Zuordnung
MNGE1020	Ökologische Bilanzierung und Life-Cycle Analysis	MA
MEEM2020	Studiengänge • Nachhaltige Gebäude- und Energiesysteme • Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	IVIA

Einzelveranstaltung	Ökologische Bilanzierung und Life-Cycle Analysis
Dozent/-in	Prof. DrIng. Sven Steinbach

Workload der LV	90 Stunden	
	Vorlesungen	
Präsenzzeit	Seminare/Übungen	30 Stunden
	Übungen mit Laborbetrieb	
	Belegbearbeitung	30 Stunden
	Vor-/Nachbearbeitung	
Selbststudienzeit	Prüfungsvorbereitung	
	Selbststudienzeit	30 Stunden
	Sonstiges	

Inhalte	- Darstellung der aktuellen Klimaschutzziele und der Anforderungen an den						
	Gebäudebereich						
	- Vergleich von Primärenergie und CO₂-Emissionen						
	- Vermittlung der Grundlagen der Treibhausgasbilanzierung auf Lebenszyklusebene						
	- Darstellung der Erfahrungen aus der Zusammenarbeit mit Wohnungsverbänden						
	- Darstellung des Einflusses nachwachsender Rohstoffe auf die Ökobilanz von						
	Gebäuden						
	- praktische Anwendung der Erkenntnisse mit Hilfe von Beispielrechnungen						
Literatur	- Hafner, A.; Rüter, S.; Diederichs, S. et al.: Treibhausgasbilanzierung von Holz-						
	gebäuden. Umsetzung neuer Anforderungen an Ökobilanzen und Ermittlung						
	empirischer Substitutionsfaktoren (THG-Holzbau). München 2017.						
	- Kaufmann, H.; Krötsch, S.; Winter, S.: Atlas Mehrgeschossiger Holzbau. München:						
	Detail Business Information GmbH (Edition Detail) 2017.						
	- DIN ISO 14040						
	- DIN ISO 14044						
	- Gantner, Johannes et al.: Energieaufwand für Gebäudekonzepte im						
	Lebenszyklus. Dessau-Roßlau: Umweltbundesamt 2019.						

Modulcode	Modulbezeichnung	Zuordnung
MEEM2030	Planung von EE-Landschaft	MA
	Studiengang Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	

Modulverantwortlich	Prof. Dr. Ilke Marschall (Fak. LGF)
Modulart	Pflichtmodul
Angebotshäufigkeit	Wintersemester, Sommersemester
Regelbelegung/Empf. Semester	2. Semester
Credits (ECTS)	5
Leistungsnachweis	Studienleistung, Prüfungsleistung
Angeboten in der Sprache	Deutsch
Voraussetzungen für dieses Modul	
Dieses Modul ist Voraussetzung für	
Moduldauer	1 Semester
Notwendige Anmeldung	
Verwendbarkeit des Moduls	

Lehrveranstaltung	Dozent/-in	Art	Teilnehm. (maximal)	Anzahl Kurse	sws	ECTS	Work- load
	Prof. Dr. Ilke Marschall (Fak. LGF)		30	1	2	2	60
Planung von EE-Landschaft	Prof. Dr. Ilke Marschall (Fak. LGF)	Seminar	30	1	2	3	90
				Summe	4	5	150
Lehrleistung pro Semester in SWS					4		

	EE-Landschaft	(Fak. LGF)	Commu	00	•	ı)	00
					Summe	4	5	150
			Lehrleistung	pro Semestei	in SWS	4		
(Qualifikationsziele	Fach- und Metho	denkompetenz	2		•		•
		Die Ctudierenden I	connon noch orf	olarojohor Tojla	ahma Inati	rumonto	برموا الممار	valt und

Die Studierenden kennen nach erfolgreicher Teilnahme Instrumente des Umwelt- und Naturschutzrechtes, die ggf. zu Einschränkungen der Genehmigungsfähigkeit von Anlagen Erneuerbarer Energien führen. Damit haben sie einen Überblick über die sogenannten Umweltprüfinstrumente. Sie kennen Methoden, die zur Bewertung der Auswirkungen von EE-Anlagen auf Natur, Umwelt und Landschaft angewandt werden und können diese in ihrer Bedeutung und Wirksamkeit beurteilen.

Handlungskompetenz

Die Studierenden kennen umweltrelevante Wirkfaktoren von Anlagen der Erneuerbaren Energietechnik in ihren Auswirkungen auf die Schutzgüter des Natur- und Umweltrechts und können diese qualifiziert einschätzen. Sie kennen Methoden relevanter Umweltprüfverfahren und können so an fachlich qualifizierten Lösungen einer optimierten Umwelt- und Naturverträglichkeit von EE-Anlagen mitwirken.

Sozialkompetenz

Die Studierenden sind in der Lage, sich sachlich und qualifiziert mit Genehmigungsbehörden sowie weiteren Akteuren des Natur- und Umweltschutzes (Naturschutzverbänden, Bürgerinitiativen) auszutauschen. Damit können sie diese Kenntnisse in Planungsprozesse einbringen und hier qualifiziert und vermittelnd den Prozess einer erfolgreichen Energiewende mitgestalten.

Vorleistung(en)	Studienleistung (Präsentation)		
Modulprüfung	sur 60 min		
Teilprüfung(en)			
Benotungsart	deutsche Bewertung von 1 bis 5		
Wichtung für die	4,3		
Gesamtnote in %	17,0		

Modulcode	Modulbezeichnung	Zuordnung
MEEM2030	Planung von EE-Landschaft	MA
	Studiengang Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	

Einzelveranstaltung	Planung von EE-Landschaft
Dozent/-in	Prof. Dr. Ilke Marschall (Fak. LGF)

Workload der LV		150 Stunden		
	Vorlesungen	30 Stunden		
Präsenzzeit	Seminare/Übungen	30 Stunden		
	Übungen mit Laborbetrieb			
	Belegbearbeitung			
	Vor-/Nachbearbeitung			
Selbststudienzeit	Prüfungsvorbereitung	30 Stunden		
	Selbststudienzeit	60 Stunden		
	Sonstiges			

Inhalte	 Überblick über wichtige Instrumente des Umwelt- und Naturschutzrechtes, die ggf. zu Einschränkungen der Genehmigungsfähigkeit von Anlagen Erneuerbarer Energien führen können Kenntnisse über Methoden von Umweltprüfinstrumenten: Umweltverträglichkeitsprüfung (UVP), Fauna-Flora-Habitatverträglichkeitsprüfung (FFH-VP), strategische Umweltprüfung (SUP), spezielle artenschutzrechtliche Prüfung (saP) und Eingriffsregelung Betrachtung von Wirkfaktoren und Auswirkungen von EE in Bezug auf die Schutzgüter des Umwelt- und Naturschutzrechtes (u.a. Boden, Wasser, biologische Vielfalt, kulturelles Erbe, menschliche Gesundheit, Landschaftsbild) Maßnahmen (auch CEF- und FCS-Maßnahmen) zur Vermeidung, Verminderung sowie zum Ausgleich von Schäden an den Schutzgütern des Naturschutz- und Umweltrechtes Möglichkeiten einer möglichst natur- und umweltschonenden Realisierung der Energiewende Analyse von Umweltwirkungen von Anlagen Erneuerbarer Energien sowie Optimierungsmöglichkeiten am konkreten Beispiel (Präsentation)
Literatur	- siehe Literaturdatenbank des Kompetenzzentrums Naturschutz und Energie-
	wende (KNE): www.naturschutz-energiewende.de

Modulcode	Modulbezeichnung	Zuordnung
MEEM2050	Primärenergien und Ressourcen, Nachhaltigkeit	MA
	Studiengang Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	

Modulverantwortlich	N.N. (Fak. LGF, Professur "Digitalisierung für Nachhaltige Landnutzung")
Modulart	Pflichtmodul
Angebotshäufigkeit	Wintersemester, Sommersemester
Regelbelegung/Empf. Semester	2. Semester
Credits (ECTS)	5
Leistungsnachweis	Prüfungsleistung
Angeboten in der Sprache	Deutsch
Voraussetzungen für dieses Modul	
Dieses Modul ist Voraussetzung für	
Moduldauer	1 Semester
Notwendige Anmeldung	
Verwendbarkeit des Moduls	

Lehrveranstaltung	Dozent/-in	Art	Teilnehm. (maximal)	Anzahl Kurse	sws	ECTS	Work- load
Primärenergien und Ressourcen, Nachhaltigkeit	Prof. Dr. Björn Machalett (Fak. LGF)	Vorlesung	30	1	2	2	60
Primärenergien und Ressourcen, Nachhaltigkeit	Prof. Dr. Björn Machalett (Fak. LGF)	Seminar	30	1	2	3	90
				Summe	4	5	150
Lehrleistung pro Semester in SWS			4				

Qualifikationsziele	Fach- und Methodenkompetenz Wiedergabe grundlegenden Wissens zu Ressourcen und Nachhaltigkeit im nationalen und globalen Maßstab Erklärung des Zusammenhangs von Energie und Ressourcenverbrauch sowie von Energie und Nachhaltigkeit und deren komplexen Wechselwirkungen
	Handlungskompetenz - Beurteilung verschiedener Primärenergiearten und Erneuerbarer Energien im Hinblick auf ihre Effizienz - Erarbeitung eines Flächenressourcenmanagements bei real existierenden Problemen
	Sozialkompetenz - Vermittlung von Nachhaltigkeitsaspekten von Primärenergien und Erneuerbaren Energien im Vergleich

Vorleistung(en)	
Modulprüfung	Belegarbeit mit Präsentation
Teilprüfung(en)	
Benotungsart	deutsche Bewertung von 1 bis 5
Wichtung für die Gesamtnote in %	4,3

Modulcode	Modulbezeichnung	Zuordnung
MEEM2050	Primärenergien und Ressourcen, Nachhaltigkeit	MA
	Studiengang Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	

Einzelveranstaltung	Primärenergien und Ressourcen, Nachhaltigkeit
Dozent/-in	Prof. Dr. Björn Machalett (Fak. LGF)

Workload der LV		150 Stunden		
	Vorlesungen	30 Stunden		
Präsenzzeit	Seminare/Übungen	30 Stunden		
	Übungen mit Laborbetrieb			
	Belegbearbeitung	30 Stunden		
	Vor-/Nachbearbeitung			
Selbststudienzeit	Prüfungsvorbereitung			
	Selbststudienzeit	60 Stunden		
	Sonstiges			

	Sonstiges
Inhalte	- Vermittlung der Grundlagen von Ressourcen und Nachhaltigkeit, Nachhaltigkeits management, Due Diligence - grundlegendes Verständnis zu den verschiedenen Arten der Primärenergie und Erneuerbarer Energien und ihrem Ressourcenbedarf und ihrer Nachhaltigkeit (z.B. in Bezug auf Rohstoffe, Klima) - Vergleich der fossilen und alternativen Energieformen von konventionellen bis zu innovativen Ansätzen - Verständnis der wirtschaftlichen, "unmittelbaren" Energie-Ressourcen wie z.B. Rohstoffe - Verständnis der "mittelbaren" Energie-Ressourcen Boden, Fläche, Umweltsphären (Pedo-, Hydro-, Atmosphäre) - Verständnis der Zusammenhänge und komplexen Wechselwirkungen in Bezug auf Energie und Ressourcen und in Bezug auf das Nachhaltigkeit-Tetraeder (Ökologie, Ökonomie, Soziales und Partizipation) - praxisorientierte seminaristische Arbeit zum Umgang mit Energie, Ressourcen und Nachhaltigkeit sowie zu Methoden von Ressourcen- und Nachhaltigkeitsmanagement - Praxisbeispiele insbesondere zum unmittelbaren und mittelbaren Flächenbedarf der unterschiedlichen Primärenergiearten - Flächenressourcenmanagement, Flächenrecycling - Reaktivierung, Folge- und Zwischennutzung von Brachflächen für alternative Energie - Untersuchung von Fallbeispielen wie insb. Flächenressourcen in Gemeinden
Literatur	
	Kommunales Flächenmanagement. - Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR) im Bundesamt für Bauwesen und Raumordnung (BBR) (Hrsg.) (2010): Handlungskatalog: "Optione erneuerbarer Energien im Stadtraum". - Thüringer Ministerium für Landwirtschaft, Forsten, Umwelt und Naturschutz (TMLFUN) (Hrsg.) (2010): Alte Flächen – Neue Energien. - Bundesministerium für Verkehr, Bau und Stadtentwicklung (BMVBS) (Hrsg.) (2011) Erneuerbare Energien: Zukunftsaufgabe der Regionalplanung.

Modulcode	Modulbezeichnung	Zuordnung
MEEM2060	Bioinformatik und Statistik	MA
	Studiengang Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	2222

Modulverantwortlich	Dr. Frederik Langner (Fak. LGF)
Modulart	Pflichtmodul
Angebotshäufigkeit	Sommersemester
Regelbelegung/Empf. Semester	2. Semester
Credits (ECTS)	5
Leistungsnachweis	Prüfungsleistung
Angeboten in der Sprache	Deutsch
Voraussetzungen für dieses Modul	
Dieses Modul ist Voraussetzung für	
Moduldauer	1 Semester
Notwendige Anmeldung	
Verwendbarkeit des Moduls	

L	ehrveranstaltung	Dozent/-in	Art	Teilnehm. (maximal)	Anzahl Kurse	sws	ECTS	Work- load
1	Statistische Grundlagen	Dr. Frederik Langner (Fak. LGF)	Seminar	30	1	2	3	90
2	Grundlagen der Informatik	Dr. Frederik Langner (Fak. LGF)	Seminar	30	1	2	2	60
	Summe			Summe	4	5	150	
	Lehrleistung pro Semester in SWS		4					

Qualifikationsziele	Fach- und Methodenkompetenz - deskriptive und induktive statistische Methoden und deren Anwendungsgebiete sowie ihre Grenzen - Grundzüge des Programmierens und der zu Grunde liegenden Prinzipien - Konzeption eigener Programme
	Handlungskompetenz - Umgang mit großen Datenmengen und deren Aufarbeitung - Anwendung statistischer Tests und Interpretation der Ergebnisse - Erstellung eigener Programme in einer aktuellen Programmiersprache
	Sozialkompetenz - Lösungen von Aufgabenstellungen in Teamarbeit

Vorleistung(en)	
Modulprüfung	Belegarbeit
Teilprüfung(en)	
Benotungsart	deutsche Bewertung von 1 bis 5
Wichtung für die Gesamtnote in %	4,3

Modulcode	Modulbezeichnung	Zuordnung
MEEM2060	Bioinformatik und Statistik	MA
	Studiengang Erneuerbare Energien Management	
	Fakultät Gebäudetechnik und Informatik	

Einzelveranstaltung	Statistische Grundlagen
Dozent/-in	Dr. Frederik Langner (Fak. LGF)

Workload der LV		90 Stunden
	Vorlesungen	
Präsenzzeit	Seminare/Übungen	30 Stunden
	Übungen mit Laborbetrieb	
	Belegbearbeitung	30 Stunden
	Vor-/Nachbearbeitung	
Selbststudienzeit	Prüfungsvorbereitung	
	Selbststudienzeit	30 Stunden
	Sonstiges	

Inhalto	- Aufarheitung von Datensätzen
Inhalte	 - Aufarbeitung von Datensätzen · Umgang mit Fehldaten · Umgang mit Datensätzen aus mehreren Quellen · Darstellungsformen von Datenmengen und ihre Anwendungsgebiete - Beschreibung von Datensätzen anhand deskriptiver statistischer Methoden · Visualisierung von Datensätzen · Nutzen geeigneter statischer Lage- und Streuungs-Maße - Mengenvergleiche mit Hilfe von induktiver Statistik · parametrische und nichtparametrische Mengenvergleiche und ihre
Literatur	Voraussetzungen
Literatur	

Einzelveranstaltung	Grundlagen der Informatik
Dozent/-in	Dr. Frederik Langner (Fak. LGF)

Workload der LV		60 Stunden
	Vorlesungen	
Präsenzzeit	Seminare/Übungen	30 Stunden
	Übungen mit Laborbetrieb	
	Belegbearbeitung	15 Stunden
	Vor-/Nachbearbeitung	
Selbststudienzeit	Prüfungsvorbereitung	
	Selbststudienzeit	15 Stunden
	Sonstiges	

Inhalte	- grundlegende Gesetzmäßigkeiten des Programmierens
	- Arbeit mit integrierten Entwicklungsumgebungen
	- Implementierung von grafischen Benutzeroberflächen
	- Entwicklung und Erstellung eigener Programmideen
	- Nutzung von Geoinformationssystemen
	- Umsetzung von Programmen auf Einplatinencomputern
	- Nutzung von Machine-Learning-Algorithmen
Literatur	

Modulcode	Modulbezeichnung	Zuordnung
MNGE1070	Beratungsmethodik	MA
MEEM2070	Studiengänge • Nachhaltige Gebäude- und Energiesysteme • Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	IVIA

Modulverantwortlich	Grundlagenzentrum
Modulart	Pflichtmodul
Angebotshäufigkeit	Sommersemester
Regelbelegung/Empf. Semester	MA NGES: 1. Semester; MA EEM: 2. Semester
Credits (ECTS)	2
Leistungsnachweis	Prüfungsleistung
Angeboten in der Sprache	Deutsch
Voraussetzungen für dieses Modul	
Dieses Modul ist Voraussetzung für	
Moduldauer	1 Semester
Notwendige Anmeldung	
Verwendbarkeit des Moduls	

L	.ehrveranstaltung	Dozent/-in	Art	Teilnehm. (maximal)	Anzahl Kurse	sws	ECTS	Work- load
1	Beratungsmethodik	PACKS	Seminar	16	1	2	2	60
	Summe				2	2	60	
	Lehrleistung pro Semester in SWS				2			

Qualifikationsziele

Fach- und Methodenkompetenz

- theoretische Grundlagen der Beratungsmethoden (u.a. systematische Erfassung des Soll- und Ist-Zustandes) und Techniken der Gesprächsführung in Beratungssettings
- Erlernen des Umgangs mit schwierigen Beratungssituationen und Ansätze der lösungsorientierten Beratung
- Die Studierenden sind in der Lage, die Beratungsbeziehung entsprechend den Basisvariablen (u.a. Akzeptanz, Wertschätzung, Authentizität, Empathie) zu gestalten.
- Entwickeln beratungsspezifischer Kompetenzen im Umgang mit unterschiedlichen Eigenschaften, Wünschen und Zielen der Kundinnen und Kunden, Klientinnen und Klienten
- Die Studierenden sind vertraut mit Formen, Bereichen und Spezialisierung der Beratung, deren spezifischen Settings und Interventionsformen.
- Erwerb von spezifischen methodischen Ansätzen bei der Gestaltung des Erstkontaktes und Beziehungsaufbau, Auftragsklärung, Abschließen von Vereinbarungen (Beratungsvertrag) und Kennen von professionellen Wegen der Methodenauswahl, der Anpassung von Methoden im Prozessverlauf und des Methodenwechsels
- Die Studierenden kennen ethische Grundlagen der Beratungsethik und sind in der Lage, eine eigenständige Positionierung und Verfahrensweise für z.B. ethische Fragen im Beratungssetting anzuwenden.
- Erlernen der Eigenperspektive auf die Rolle einer Beraterin bzw. eines Beraters kritisch zu reflektieren (u.a. Anwendung von Methoden, Ethik, Vorurteile, Bewertung sowie kompetente Anwendung von Techniken der Gesprächsführung)

Handlungskompetenz

- Die Studierenden können differenzierte Techniken der Gesprächsführung in Beratungssituationen situativ auswählen und sicher anwenden.
- Die Studierenden beherrschen die Grundelemente der Gesprächssteuerung und sind in der Lage, die Beratungsbeziehung entsprechend den Basisvariablen zu gestalten.

- Die Studierenden können erworbenes theoretisches und methodisches Wissen
gezielt anwenden und können evaluieren, welche unterschiedlichen Herangehens-
weisen mit welchen Folgen und Folgerungen für die Ausgestaltung von Beratungs-
prozessen (insbesondere Fachberatung) verbunden sind.

- Die Studierenden gewinnen Selbstsicherheit durch Trainings (ausgewählte Beratungssituationen) mit hohen Selbsterfahrungsanteilen und verschaffen sich so ein anwendungsbereites methodisches Handlungsspektrum, welches sie in zugehörige theoretische Bezüge verorten können.
- Die Studierenden können interdisziplinäre Perspektiven und damit verbundene differenzierte Erwartungshaltungen einordnen und eigene Handlungsstrategien im Beratungskontext entwerfen (Fokus: Anwendungsbezug).

Sozialkompetenz

- Die Studierenden werden sich über die Verantwortlichkeiten in Beratungsprozessen bewusst.
- Stärkung der Selbstkompetenz in den Ebenen Kommunikation und Techniken der Gesprächsführung
- Erarbeitung und Anwendung differenzierter Reflexionsebenen, vorrangig der Selbstreflexion im Kontext der eingenommenen Beraterinnen- bzw. Beraterrolle
- Die Studierenden stärken ihr Selbstvertrauen und Selbstbewusstsein durch praktische Übungen und anschließende Auswertung mit Gruppenfeedback.
- Erlernen einer kritischen Selbsteinschätzung im Kontext der Beraterinnen- bzw. Beraterrolle, Empathie gegenüber Kundinnen und Kunden, Klientinnen und Klienten sowie respektvolles und wertschätzendes Verhalten
- Vermögen, Beratungsstörungen zu erkennen und unter Berücksichtigung ethischer Beratungsparameter angemessen darauf zu reagieren

Vorleistung(en)		
Modulprüfung	Belegarbeit mit Präsentation	
Teilprüfung(en)		
Benotungsart	eutsche Bewertung von 1 bis 5	
Wichtung für die	MA NGES: 2,4	
Gesamtnote in %	MA EEM: 1,7	

Modulcode	Modulbezeichnung	Zuordnung
MNGE1070	Beratungsmethodik	MA
MEEM2070	Studiengänge • Nachhaltige Gebäude- und Energiesysteme • Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	IVIA

Einzelveranstaltung	Beratungsmethodik
Dozent/-in	PACKS

Workload der LV	60 Stunden	
	Vorlesungen	
Präsenzzeit	Seminare/Übungen	30 Stunden
	Übungen mit Laborbetrieb	
Selbststudienzeit	Belegbearbeitung	15 Stunden
	Vor-/Nachbearbeitung	
	Prüfungsvorbereitung	
	Selbststudienzeit	15 Stunden
	Sonstiges	

Inhalte	 theoretische Grundlagen verschiedener Beratungsansätze und Beratungsanlässe Grundlagen der Gesprächsführung (Techniken: u.a. aktives Zuhören, kontrollierter Dialog, Fragetechniken, Spiegeln, Ich-Botschaften) sowie ausgewählte Übungen und Reflexion der Erfahrungen zur Gesprächsführung Auftragsklärung des erwarteten Beratungsthemas und des Beratungsprozesses rechtliche Aspekte bei verschiedenen Beratungsformen Erwartungen und spezifische fachliche Anforderungen an die Rolle der Beraterin bzw. des Beraters (Fähigkeiten, Fertigkeiten, Eigenschaften) verschiedene Analysetechniken (z.B. SWOT- und Netzwerkanalyse im fachspezifischen Kontext, Fallbeispiele) Anwendungsbezüge aufbereiten durch Auswahl verschiedener Beratungsanlässe und Durchführung von Konfliktberatung, Fachberatung sowie kollegialer Beratung Störungen im Beratungsprozess erkennen und Gestaltung des Umgangs mit schwierigen Kundinnen und Kunden, Klientinnen und Klienten inhaltliche Klärungen von diversen Reflexionsebenen und einer kritischen, stärkenden, auf Erlangung von Beratungskompetenzen abzielenden Feedbackkultur
Literatur	Themenspezifische Literatur und Arbeitsmaterialien werden im Seminar mitgeteilt und über die Lernplattform Moodle zur Verfügung gestellt.

Modulcode	Modulbezeichnung	Zuordnung
MNGE1060	Nachhaltige Gas- und Wasserversorgung	MA
MEEM2810	Studiengänge • Nachhaltige Gebäude- und Energiesysteme • Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	IVIA

Modulverantwortlich	N.N. (Professur Gas/Wasser)
Modulart	MA NGES: Pflichtmodul; MA EEM: Wahlpflichtmodul
Angebotshäufigkeit	Sommersemester
Regelbelegung/Empf. Semester	MA NGES: 1. Semester; MA EEM: 2. Semester
Credits (ECTS)	5
Leistungsnachweis	Studienleistung, Prüfungsleistung
Angeboten in der Sprache	Deutsch
Voraussetzungen für dieses Modul	
Dieses Modul ist Voraussetzung für	
Moduldauer	1 Semester
Notwendige Anmeldung	
Verwendbarkeit des Moduls	

L	ehrveranstaltung	Dozent/-in	Art	Teilnehm. (maximal)	Anz. Kurse	sws	ECTS	Work- load
1	Nachhaltige Gas- und Wasserversorgung	N.N. (Professur Gas/Wasser)	Vorlesung	100	1	2	2	60
2	Nachhaltige Gas- und Wasserversorgung	N.N. (Professur Gas/Wasser)	Übung	25	2	2	2	60
3	Nachhaltige Gas- und Wasserversorgung	Laboringenieur/-in	Labor				1	30
					Summe	4	5	150
	Lehrleistung pro Semester in SWS				4			

	Qualifikationsziele	Fach- und Methodenkompetenz Die Studierenden sind in der Lage, grundlegende gas- und wasserfachliche Zusammenhänge in Bezug auf den Aufbau und die Funktionsweise von Gas- und Wasserversorgungssystemen (Gas- und Wasseraufkommen, Gas- und Wassertransport, Gas- und Wasserverteilung, Wasserdarbietung, Gas- und Wasserspeicherung, Systemelemente) darzustellen. Auf dieser Grundlage gelingt es den Studierenden, Basisprozesse und Systemelemente (Rohrleitungen, Verdichter, Pumpen, Gas-Druckminderungsanlagen, Wasseraufbereitungsverfahren) systemisch einzuordnen sowie deren Aufbau und Funktionsweise zu erläutern und exakt darzustellen bzw. zu modellieren.
Sozialkompetenz		Die Studierenden können gas- und wasserfachliches Grundwissen, einschließlich wichtiger Teile des technischen Regelwerkes, sicher interpretieren, analysieren und sowohl auf einfache als auch auf komplexere Fragestellungen der Planung und des Betreibens von Gas- und Wasserversorgungssystemen anwenden, eigene Lösungsansätze selbstständig entwickeln und kritisch bewerten sowie energiewirtschaftliche/energie- und umweltpolitische Entwicklungen beurteilen.

Vorleistung(en)	Studienleistung (Labortestat)	
Modulprüfung	Klausur 90 min	
Teilprüfung(en)		
Benotungsart	deutsche Bewertung von 1 bis 5	
Wichtung für die	MA NGES: 6,1	
Gesamtnote in %	MA EEM: 4,3	

Modulcode	Modulbezeichnung	Zuordnung
MNGE1060	Nachhaltige Gas- und Wasserversorgung	MA
MEEM2810	Studiengänge • Nachhaltige Gebäude- und Energiesysteme • Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	IVIA

Einzelveranstaltung	Nachhaltige Gas- und Wasserversorgung
Dozent/-in	N.N. (Professur Gas/Wasser)

Workload der LV	150 Stunden		
	Vorlesungen	30 Stunden	
Präsenzzeit	Seminare/Übungen	30 Stunden	
	Übungen mit Laborbetrieb	15 Stunden	
	Belegbearbeitung		
	Vor-/Nachbearbeitung	45 Stunden	
Selbststudienzeit	Prüfungsvorbereitung	15 Stunden	
	Selbststudienzeit	15 Stunden	
	Sonstiges		

Inhalte	 Eigenschaften von Brenngasen, Brenngascharakteristik energiewirtschaftliche Bewertung gasförmiger Primär- und Sekundärenergieträger Erdgase, Biogas, Flüssiggase, Wasserstoff Herstellung von Biogasen, Biogasanlagen, Konditionierung von Biogas, Biomethan Flüssiggase, Bio-LPG, Flüssiggasanlagen Wasserstoff: Herstellung, Speicherung, Transport PtG: Konzepte, Verfahren, Systemintegration
	 natürlicher Wasserkreislauf, Trinkwassergewinnung und Ressourcenschutz Trinkwasserhygiene, Trinkwasserverordnung, Schutzmaßnahmen Strukturen der Wasserver- und der Abwasserentsorgung Wasserinfrastruktur in der Quartiersversorgung Wasseraufbereitung: Konzepte, Verfahren, Systemintegration Grauwassernutzung und Kreislaufwirtschaft Nachhaltigkeitsbewertung der Wasserversorgung (LEED, DGNB)
Literatur	 Lendt, B. und Cerbe, G. (Hrsg.): Grundlagen der Gastechnik: Gasbeschaffung, Gasverteilung, Gasverwendung. 8., vollständig neu bearbeitete Auflage. München, Wien: Hanser 2018. Mischner, J.; Fasold, HG. und Heymer, J.: gas2energy.net. Systemplanerische Grundlagen der Gasversorgung. 2. Auflage. München: DIV Deutscher Industrieverlag 2015. Mischner, J.; Juch, T. und Kurth, K.: Flüssiggasanlagen: Entwurf, Planung, Optimierung. Berlin: Verlag für Bauwesen 1999. Schmidt, Th.: Wasserstofftechnik. Grundlagen, Systeme, Anwendung, Wirtschaft. München: Hanser 2020.
	 Trinkwasserverordnung, aktuelle Version DIN 1988, 1989, 1986, VDI 6023 DVGW-Forschungsberichte und -Regelwerke UBA-Schriftenreihe Trinkwasserversorgung Deutsche Gesellschaft für Nachhaltiges Bauen: Das DGNB-Zertifizierungssystem; DGNB System, Kriterienkatalog U.S. Green Building Council: LEED Rating System

Modulcode	dulcode Modulbezeichnung	
MEEM2820	EE-Entwurfskonzept Objektplanung	MA
	Studiengang Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	

Modulverantwortlich	Prof. Inga Hahn (Fak. LGF)
Modulart	Wahlpflichtmodul
Angebotshäufigkeit	Sommersemester
Regelbelegung/Empf. Semester	2. Semester
Credits (ECTS)	5
Leistungsnachweis	Prüfungsleistung
Angeboten in der Sprache	Deutsch
Voraussetzungen für dieses Modul	
Dieses Modul ist Voraussetzung für	
Moduldauer	1 Semester
Notwendige Anmeldung	
Verwendbarkeit des Moduls	

L	ehrveranstaltung	Dozent/-in	Art	Teilnehm. (maximal)	Anzahl Kurse	sws	ECTS	Work- load
1	Erarbeitung einer Entwurfsidee	Prof. Inga Hahn (Fak. LGF)	Seminar	30	1	2	2	60
2	Projekt	Prof. Inga Hahn (Fak. LGF)	Projekt	15	2	2	3	90
					Summe	4	5	150
			Lehrleistung	pro Semeste	r in SWS	4		

Qualifikationsziele	Fach- und Methodenkompetenz
	Die Studierenden wissen nach erfolgreicher Teilnahme am Modul:
	- wie ein Planungsprozess der Objektplanung aufgebaut ist
	- wie sie eine ortspezifische Analyse vornehmen
	- wie sie mit dem erworbenen praxisorientierten und theoretischen Wissen EE-Anlagen in einen stadt- und landräumlichen Kontext einbetten bzw. aus ihm
	heraus integrativ entwickeln
	- wie sie ein EE-Konzept mit weiteren Funktionen überlagernd im Sinne einer flächenoptimierten Planung entwickeln
	Handlungskompetenz
	Die Studierenden verstehen nach erfolgreicher Teilnahme am Modul:
	- Situationsanalysen und Bestandsbewertungen vorzunehmen
	- Problemlösungen zu entwickeln und fundierte Entscheidungen zu fällen
	Sozialkompetenz
	In Gruppenbearbeitungen werden Kommunikations- und Mitgestaltungsfähigkeiten in der Konzeptfindung erworben. Anhand aktueller Fragestellungen wird das eigenständige Entwickeln von innovativen Lösungsansätzen in Gruppenarbeit und mit einem hohen Maß an Selbstorganisation vertieft und in gemeinsamen Kolloquien kritisch und argumentativ diskutiert.
	Zwischenpräsentationen im Kolloquium sind Teilleistungen der Studienleistung. Eine Ortsbegehung des Planungsgebietes kann Bestandteil des Moduls sein.

Vorleistung(en)	
_ ` <i>'</i>	Belegarbeit mit Präsentation
Teilprüfung(en)	
Benotungsart	deutsche Bewertung von 1 bis 5
Wichtung für die	4,3
Gesamtnote in %	4,5

Modulcode	Modulbezeichnung	Zuordnung
MEEM2820	EE-Entwurfskonzept Objektplanung	MA
	Studiengang Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	

Einzelveranstaltung	EE-Entwurfskonzept Objektplanung
Dozent/-in	Prof. Inga Hahn (Fak. LGF)

Workload der LV		150 Stunden	
	Vorlesungen		
Präsenzzeit	Seminare/Übungen	30 Stunden	
	Projekt	30 Stunden	
	Belegbearbeitung	60 Stunden	
	Vor-/Nachbearbeitung		
Selbststudienzeit	Prüfungsvorbereitung		
	Selbststudienzeit	30 Stunden	
	Sonstiges		

Inhalte	- Recherche von Best-Practice-Projekten
	- stadt- und landschaftsräumliche Analyse eines Projektgebietes
	- logische Herleitung eines schlüssigen Konzepts als Synthese der
	Analyseergebnisse
	- eigenständiges Entwickeln einer Projektidee zu einem Ort
	- Ausloten von Konzeptansätzen anhand von Referenzen
	- Entwicklung einer räumlichen Struktur
	- Entwicklung eines damit einhergehenden Energiekonzepts
	- kreative Weiterentwicklung eines Mehrwerts und Generieren von Vielfalt einer
	EE-Anlage durch Mehrfachnutzungen im Sinne einer Flächenreduktion
	- überzeugende grafische Zusammenstellung der Arbeit
	Eine eigene planungsvorhabenbezogene Recherche zu Literatur und Fachbeiträgen
	ist Bestandteil der Projektbearbeitung.
Literatur	- Literaturempfehlungen planungsvorhabenbezogen

Modulcode	Modulbezeichnung	Zuordnung
MEEM2830	Natural Resources – Depletion and Protection	MA
	Studiengang Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	2222

Modulverantwortlich	Prof. Dr. sc. agr. Kerstin Wydra (Fak. LGF)
Modulart	Wahlpflichtmodul
Angebotshäufigkeit	Sommersemester
Regelbelegung/Empf. Semester	2. Semester
Credits (ECTS)	5
Leistungsnachweis	Prüfungsleistung
Angeboten in der Sprache	Englisch
Voraussetzungen für dieses Modul	
Dieses Modul ist Voraussetzung für	
Moduldauer	1 Semester
Notwendige Anmeldung	
Verwendbarkeit des Moduls	Bauingenieurwesen

L	.ehrveranstaltung	Dozent/-in	Art	Teilnehm. (maximal)	Anzahl Kurse	sws	ECTS	Work- load
1	Natural Resources – Depletion and Protection	Prof. Dr. sc. agr. Kerstin Wydra (Fak. LGF)	Vorlesung	25	1	2	2	60
2	Natural Resources – Depletion and Protection	Prof. Dr. sc. agr. Kerstin Wydra (Fak. LGF)	Seminar	25	1	2	3	90
	Summe				Summe	4	5	150
	Lehrleistung pro Semester in SWS			4	•	·		

Qualifikationsziele	The students will learn about the state of the world's most important natural resources (especially those important for infrastructure needs), their management, value and protection, and economic issues (green economy, circular economy, waste and recycling) from a global perspective.
	They will acquire an interdisciplinary, holistic view of resource management, be able to devise research questions based on their specific professional background and develop interdisciplinary approaches towards solving the global resource problem.
	When developing specific projects, they will consider the lowest possible consumption of resources and impact on climate.

Vorleistung(en)	
Modulprüfung	Belegarbeit mit Präsentation
Teilprüfung(en)	
Benotungsart	deutsche Bewertung von 1 bis 5
Wichtung für die	1.2
Gesamtnote in %	4,3

Modulcode	Modulbezeichnung	Zuordnung
MEEM2830	Natural Resources – Depletion and Protection	MA
	Studiengang Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	

Einzelveranstaltung	Natural Resources – Depletion and Protection
Dozent/-in	Prof. Dr. sc. agr. Kerstin Wydra (Fak. LGF)

Workload der LV		150 Stunden	
	Vorlesungen	30 Stunden	
Präsenzzeit	Seminare/Übungen	30 Stunden	
	Übungen mit Laborbetrieb		
	Belegbearbeitung		
	Vor-/Nachbearbeitung		
Selbststudienzeit	Prüfungsvorbereitung		
	Selbststudienzeit	90 Stunden	
	Sonstiges		

	Constiges
Inhalte	Various issues relating to natural resources (land, vegetation, soil, water, raw materials/minerals, sand), the status quo of the environment, planetary boundaries and resource protection (resource efficiency, waste management and recycling, green economy, cradle to cradle, etc.) are presented from a global perspective, using international examples: - the impact of climate change on natural resources in terms of human needs and infrastructure - the state of the world's forests - concept of planetary boundaries: biodiversity, excess nitrogen (N) and phosphorus (P) in the environment, ocean acidification, changes in land cover, etc. - the Anthropocene: concept of resilience, global megatrends, etc. - Living Planet Index - tipping point - waste and recycling - footprint: ecological, nitrogen, carbon dioxide, land, water - raw materials: global reserves, minerals and rare earth elements, sand - resource efficiency and productivity - decoupling and circular economy - bio-economy, green economy, postgrowth society - timber use as carbon sink - life cycle assessment of building materials and structures - design guidelines for green buildings - reuse of existing materials e.g. asphalt, brick, concrete, insulating materials, structural steel, wood, glass etc.
	- strategies and instruments for waste management plans on construction sites
Literatur	 Global Trends to 2030 – Challenges and Choices for Europe. www.iss.europa.eu/content/global-trends-2030—challenges-and-choices-europe IPBES Assessment Report on Land Degradation and Restoration. 2019. www.ipbes.net/assessment-reports/ldr Resource-Efficient Pathways towards Greenhouse-Gas-Neutrality – RESCUE. UBA 2019. www.umweltbundesamt.de/en/rescue/summary_report Steffen et al. 2015: Planetary boundaries: Guiding human development on a changing planet. https://science.sciencemag.org/content/347/6223/1259855