

Modulhandbuch 7. Semester

Bachelorstudiengang Nachhaltige Gebäude- und Energiesysteme (BA NGES)

Modulcode	Modulbezeichnung	Zuordnung
BNGE7010	Bachelorarbeit mit Kolloquium	ВА
	Studiengang Nachhaltige Gebäude- und Energiesysteme Fakultät Gebäudetechnik und Informatik	

Modulverantwortlich	Studiengangsleitung
Modulart	Pflichtmodul
Angebotshäufigkeit	Wintersemester
Regelbelegung/Empf. Semester	7. Semester
Credits (ECTS)	15
Leistungsnachweis	Prüfungsleistung
Angeboten in der Sprache	Deutsch
Voraussetzungen für dieses Modul	
Dieses Modul ist Voraussetzung für	
Moduldauer	1 Semester
Notwendige Anmeldung	
Verwendbarkeit des Moduls	

L	ehrveranstaltung	Dozent/-in	Art	Teilnehm. (maximal)	Anz. Kurse	sws	ECTS	Work- load
,	Bachelorarbeit mit Kolloquium	Lehrende(r) der Fach- richtung Gebäude- und Energietechnik	Abschluss- arbeit (Thesis)				15	450
	Summe				15	450		
	Lehrleistung pro Semester in SWS							

Qualifikationsziele	- Nachweis der Befähigung, in begrenzter Zeit eine Aufgabe aus den Bereichen				
	Gebäude- und Energietechnik (Vertiefung Technik), Energiewirtschaft, Energie-				
	technik oder Energiehandel (Vertiefung Wirtschaft) mit wissenschaftlichen				
	Methoden unter Anleitung zu lösen				
	- Nachweis der Befähigung, die Lösung kritisch und unter besonderer Berücksich-				
	tigung von Aspekten der Nachhaltigkeit und Ressourcenschonung zu werten, nach				
	wissenschaftlichen Gesichtspunkten darzustellen und zu präsentieren				

Vorleistung(en)	
Modulprüfung	schriftliche Abschlussarbeit, 70 %; Kolloquium, 30 %
Teilprüfung(en)	
Benotungsart	deutsche Bewertung von 1 bis 5
Wichtung für die	8,7
Gesamtnote in %	0,7

Modulcode Modulbezeichnung		Zuordnung
BNGE7010	Bachelorarbeit mit Kolloquium	ВА
	Studiengang Nachhaltige Gebäude- und Energiesysteme Fakultät Gebäudetechnik und Informatik	

Einzelveranstaltung	Bachelorarbeit mit Kolloquium
Dozent/-in	Lehrende(r) der Fachrichtung Gebäude- und Energietechnik

Workload der LV	450 Stunden	
	Vorlesungen	
Präsenzzeit	Seminare/Übungen	
	Übungen mit Laborbetrieb	
	Belegbearbeitung	
	Vor-/Nachbearbeitung	
Selbststudienzeit	Prüfungsvorbereitung	
Seibststudienzeit	Selbststudienzeit	
	Sonstiges: eigenständiges wissenschaftliches Arbeiten	450 Stunden

Inhalte	 Abfassen einer wissenschaftlichen Arbeit einschl. Präsentation der Arbeit und Verteidigung der Lösungsansätze in einem Kolloquium Selbständiges Bearbeiten einer Aufgabe mit wissenschaftlichen Methoden unte Anleitung: Die Aufgabe (praxisnah aus der gewählten Vertiefung Technik oder Wirtschaft) kann aus einem Katalog von zugelassenen Aufgabenstellungen gewählt werden und ist im Regelfall einzeln zu bearbeiten. Über die Zulassung 	
	gewählt werden und ist im Regelfall einzeln zu bearbeiten. Über die Zulassung einer Aufgabenstellung entscheidet der/die Betreuer/-in.	
Literatur	- entsprechend der Aufgabenstellung	

Modulcode Modulbezeichnung		Zuordnung
BNGE7020	Gebäude- und Anlagensimulation	ВА
BITOLIVE	Studiengang Nachhaltige Gebäude- und Energiesysteme Fakultät Gebäudetechnik und Informatik	

Modulverantwortlich	Studiengangsleitung
Modulart	Pflichtmodul
Angebotshäufigkeit	Wintersemester
Regelbelegung/Empf. Semester	7. Semester
Credits (ECTS)	5
Leistungsnachweis	Prüfungsleistung
Angeboten in der Sprache	Deutsch
Voraussetzungen für dieses Modul	
Dieses Modul ist Voraussetzung für	
Moduldauer	1 Semester
Notwendige Anmeldung	
Verwendbarkeit des Moduls	

L	ehrveranstaltung	Dozent/-in	Art	Teilnehm. (maximal)	Anz. Kurse	sws	ECTS	Work- load
1	Gebäude- und Anlagen- simulation	- N.N. (Professur Wärme/Kälte) - N.N. (Professur Lüftung/Klima)	Seminar	25	4	4	5	150
					Summe	4	5	150
	Lehrleistung pro Semester in SWS				4			

Lehrleistung pro Semester in SWS 4 Qualifikationsziele Fach- und Methodenkompetenz Die Studierenden können komplexe Gebäude und deren technische Anlagen im Rahmen von Simulationsstudien analysieren und bewerten. Sie sind fähig, selbstständig digitale Gebäude- und Anlagenmodelle mit einer Simulationssoftware zu entwickeln. Sie besitzen die Fertigkeiten zur Parametrierung von Modellen, mathematische Kenntnisse zur Modelloptimierung, zur Durchführung von Simulationen sowie zur Bewertung und Interpretation der Ergebnisse.

Handlungskompetenz

Die Studierenden beherrschen die Fachsprache und fachspezifischen Methoden und können auf dieser Basis neue technische Herausforderungen bewältigen. Sie sind in der Lage, systematisch, analytisch und problemorientiert zu denken. Sie besitzen das für das Fachgebiet erforderliche Präzisionsvermögen, das notwendige räumliche Vorstellungsvermögen durch Visualisierung funktionaler Zusammenhänge und das ebenso wichtige Abstraktionsvermögen.

Sozialkompetenz

Die Studierenden sind in der Lage, fachspezifische Aufgaben im Team und auch eigenständig zu bearbeiten. Sie können fachspezifische Methoden und Handlungs-anweisungen in natürlicher Sprache kommunizieren. Auf der Grundlage des erworbenen Wissens und Verständnisses verfügen die Studierenden zudem über die Kommunikationsfähigkeit im Sinne der integralen Planung von Gebäuden.

Vorleistung(en)	
Modulprüfung	Belegarbeit, 70 %; Präsentation, 30 %
Teilprüfung(en)	
Benotungsart	deutsche Bewertung von 1 bis 5
Wichtung für die Gesamtnote in %	2,9

Modulcode	Modulbezeichnung	Zuordnung
BNGE7020	Gebäude- und Anlagensimulation	ВА
	Studiengang Nachhaltige Gebäude- und Energiesysteme Fakultät Gebäudetechnik und Informatik	

Einzelveranstaltung	Gebäude- und Anlagensimulation	
Dozent/-in	- N.N. (Professur Wärme/Kälte)	
2020110 111	- N.N. (Professur Lüftung/Klima)	

Workload der LV	150 Stunden	
	Vorlesungen	
Präsenzzeit	Seminare/Übungen	60 Stunden
	Übungen mit Laborbetrieb	
	Belegbearbeitung	30 Stunden
	Vor-/Nachbearbeitung	30 Stunden
Selbststudienzeit	Prüfungsvorbereitung	
	Selbststudienzeit	30 Stunden
	Sonstiges	

Inhalte	1. Einführung in die dynamische Simulation 1.1. Simulationsgrundlagen	
	1.2. Simulationsmodell	
	1.3. Modellierungsansätze	
	1.4. Simulationswerkzeuge	
	2. Dynamische Gebäudesimulation	
	2.1. Standort-, Wetter- und Klimadaten	
	2.2. Geometrisches Modell 2.3. Nutzungsprofile	
	2.4. Konstruktionsparametrierung	
	2.5. Öffnungen und Verschattungen	
	3. Dynamische Anlagensimulation	
	3.1. Anlagenmodell	
	S.2. Komponentenparametrierung S.3. Wärme- und kältetechnische Anlagen	
	3.4. Klima- und lüftungstechnische Anlagen	
	4. Simulationsberechnung 4.1. Heiz- und Kühllastermittlung	
	4.2. Behaglichkeits- und Lastverlaufsprofile	
	4.3. Sensitivitäts- und Optimierungsanalysen	
	4.4. Ergebnisinterpretation und -bewertung	
Literatur	- Handbücher und Online-Hilfe der verwendeten Simulationssoftware	

Modulcode	Modulbezeichnung	Zuordnung
BNGE7110	Nachhaltige Quartiersenergieversorgung	ВА
	Studiengang Nachhaltige Gebäude- und Energiesysteme Fakultät Gebäudetechnik und Informatik	

Modulverantwortlich	N.N. (Professur Wärme/Kälte)	
Modulart	Pflichtmodul der Vertiefung Technik	
Angebotshäufigkeit	Wintersemester	
Regelbelegung/Empf. Semester	7. Semester	
Credits (ECTS)	5	
Leistungsnachweis	Studienleistung, Prüfungsleistung	
Angeboten in der Sprache	Deutsch	
Voraussetzungen für dieses Modul		
Dieses Modul ist Voraussetzung für		
Moduldauer	1 Semester	
Notwendige Anmeldung		
Verwendbarkeit des Moduls		

L	ehrveranstaltung	Dozent/-in	Art	Teilnehm. (maximal)	Anz. Kurse	sws	ECTS	Work- load
1	Nachhaltige Quartiers- energieversorgung	N.N. (Professur Wärme/Kälte)	Vorlesung	100	1	2	2	60
2	Nachhaltige Quartiers- energieversorgung	N.N. (Professur Wärme/Kälte)	Übung	25	4	2	2	60
3	Nachhaltige Quartiers- energieversorgung	DiplIng. (FH) Sibylle Seidel	Labor				1	30
					Summe	4	5	150
	Lehrleistung pro Semester in SWS			4				

Qualifikationsziele Fach- und Methodenkompetenz Die Studierenden erwerben die wesentlichen methodischen und fachpraktischen Kenntnisse hinsichtlich der technischen Anlagen zur Energieaufnahme und -verteilung im Quartier. Sie kennen die wichtigsten Energiequellen und -senken, Netzstrukturen und Speichertechnologien sowie die Bedeutung geeigneter Informations- und Kommunikationsstrukturen und von Resilienz. Sie können Wärmeund Kältenetze sowie deren Zusatzkomponenten für Quartiere konzipieren und dimensionieren. Zudem sind sie in der Lage, die Nachhaltigkeit der geplanten wärmeund kältetechnischen Anlagen zu berechnen und vergleichend zu beurteilen. Die diesbezüglich notwendigen gängigen Berechnungsverfahren wenden sie sicher an. Handlungskompetenz Die Studierenden besitzen die Fähigkeit, die gültigen Normen bei der Planung versorgungstechnischer Anlagen anzuwenden und die gewonnenen Erkenntnisse kritisch zu bewerten. Sie besitzen die Befähigung zur Auswahl geeigneter hydraulischer Schaltungen in Abhängigkeit von den Nutzeranforderungen und zur Analyse und Problemlösung bestehender Anlagen. Sozialkompetenz Die Studierenden sind in der Lage, fachspezifische Aufgaben im Team und auch

Prüfungsmodalitäten

Vorleistung(en)	Studienleistung (Labortestat)
Modulprüfung	Belegarbeit, 70 %; Präsentation, 30 %
Teilprüfung(en)	
Benotungsart	deutsche Bewertung von 1 bis 5
Wichtung für die Gesamtnote in %	2,9

anweisungen in natürlicher Sprache kommunizieren.

eigenständig zu bearbeiten. Sie können fachspezifische Methoden und Handlungs-

Modulcode	Modulbezeichnung	Zuordnung
BNGE7110	Nachhaltige Quartiersenergieversorgung	ВА
	Studiengang Nachhaltige Gebäude- und Energiesysteme Fakultät Gebäudetechnik und Informatik	

Einzelveranstaltung	Nachhaltige Quartiersenergieversorgung
Dozent/-in	N.N. (Professur Wärme/Kälte)

Workload der LV	150 Stunden	
	Vorlesungen	30 Stunden
Präsenzzeit	Seminare/Übungen	30 Stunden
	Übungen mit Laborbetrieb	15 Stunden
	Belegbearbeitung	30 Stunden
	Vor-/Nachbearbeitung	15 Stunden
Selbststudienzeit	Prüfungsvorbereitung	
	Selbststudienzeit	30 Stunden
	Sonstiges	

Inhalte	1. Grundlagen der Quartiersenergieversorgung
	1.1. Quartiersenergiestrukturen
	1.2. Regenerative Energiequellen und -senken
	1.3. Energienetze
	1.4. Energiespeicherung 1.5. Informations- und Kommunikationsstrukturen
	1.5. Informations- und Kommunikationsstrukturen 1.6. Markt und Wirtschaftlichkeit
	1.7. Resilienz
	2. Wärme- und Kältenetzplanung
	2.1. Planungsgrundsätze
	2.2. Angebots- und Lastprofilermittlung
	2.3. Abnehmer- und Erzeugeranbindung
	2.4. Rohrnetzbemessung
	2.5. Komponentenauslegung 2.6. Speicherdimensionierung
	3. Nachhaltigkeitsbewertung
	3.1. Umweltbewertung
	3.2. Wirtschaftlichkeitsbewertung
	3.3. Ökoeffizienzbewertung
Literatur	- Recknagel/Sprenger: Taschenbuch für Heizungs- und Klimatechnik. Oldenbourg
	Industrieverlag.
	 Ross, H.: Hydraulik der Wasserheizung. Oldenbourg Verlag. Fraunhofer Verlag (Hrsg.): Low-Temperature District Heating Implementation
	Guidebook, Berlin 2021.
	- DIN EN 1264, DIN EN 15377, DIN EN 12828
	- VDI 2073
	- VDMA 24199
	Alle Literaturquellen sind in der jeweils aktuellen Ausgabe zu verwenden.
	This Enterator queller sind in der jeweils antachen Ausgabe zu Verwenden.

Modulcode	Modulbezeichnung	Zuordnung
BNGE7120	Klimatechnik	ВА
	Studiengang Nachhaltige Gebäude- und Energiesysteme Fakultät Gebäudetechnik und Informatik	

Modulverantwortlich	N.N. (Professur Lüftung/Klima)
Modulart	Pflichtmodul der Vertiefung Technik
Angebotshäufigkeit	Wintersemester
Regelbelegung/Empf. Semester	7. Semester
Credits (ECTS)	5
Leistungsnachweis	Studienleistung, Prüfungsleistung
Angeboten in der Sprache	Deutsch
Voraussetzungen für dieses Modul	Lüftungstechnik, Kältetechnische Anlagen
Dieses Modul ist Voraussetzung für	
Moduldauer	1 Semester
Notwendige Anmeldung	
Verwendbarkeit des Moduls	

L	ehrveranstaltung	Dozent/-in	Art	Teilnehm. (maximal)	Anz. Kurse	sws	ECTS	Work- load
1	Klimatechnik	N.N. (Professur Lüftung/Klima)	Vorlesung	100	1	2	2	60
2	Klimatechnik	N.N. (Professur Lüftung/Klima)	Übung	25	4	2	2	60
3	Klimatechnik	DiplIng. Sylvia Willing	Labor				1	30
	Summe			Summe	4	5	150	
	Lehrleistung pro Semester in SWS			r in SWS	4			

Qualifikationsziele	Fach- und Methodenkompetenz
	Schwerpunkte der Lehrveranstaltung bilden die bedarfsgerechte und nachhaltige
	Konzeption und Integration der technischen Anlagen und Systeme der Kälte- und
	Klimatechnik. Im Fokus stehen die energetischen und ökologischen Aspekte und Prinzipien bei der Planung und dem Betrieb komplexer Anlagen. Die Studierenden
	sind in der Lage, die Berechnungen mit entsprechenden Tools und Software selbst-
	ständig durchzuführen, die Ergebnisse analytisch kritisch zu bewerten und in einer
	Projektarbeit anzuwenden und zu dokumentieren.
	Handlungskompetenz
	Die Studierenden besitzen die Fähigkeit, ingenieurtechnisches Wissen als Grundlage
	für die Planung und Bewertung von verschiedenen Anlagenkonzepten anzuwenden
	und Investitionsentscheidungen vorzubereiten.
	Sozialkompetenz
	Die Studierenden können Anforderungen zur Gebäudeautomation mit Planungs-
	beteiligten anderer fachlicher Ausrichtung kommunizieren und diskutieren.

Vorleistung(en)	Studienleistung (Labortestat)
Modulprüfung	Belegarbeit, 70 %; Präsentation, 30 %
Teilprüfung(en)	
Benotungsart	deutsche Bewertung von 1 bis 5
Wichtung für die	2.0
Gesamtnote in %	2,9

Modulcode	Modulbezeichnung	Zuordnung
BNGE7120	Klimatechnik	ВА
	Studiengang Nachhaltige Gebäude- und Energiesysteme Fakultät Gebäudetechnik und Informatik	

Einzelveranstaltung	Klimatechnik
Dozent/-in	N.N. (Professur Lüftung/Klima)

Workload der LV	150 Stunden	
	Vorlesungen	30 Stunden
Präsenzzeit	Seminare/Übungen	30 Stunden
	Übungen mit Laborbetrieb	15 Stunden
	Belegbearbeitung	30 Stunden
	Vor-/Nachbearbeitung	15 Stunden
Selbststudienzeit	Prüfungsvorbereitung	
	Selbststudienzeit	30 Stunden
	Sonstiges	

Inhalte	 Komponenten der Klimaanlage: Ventilatoren, Schalldämpfer, Be- und Entfeuchtungseinrichtungen, Lufterhitzer und Luftkühler, Wärmerückgewinnungssysteme, Luftfilter zentrale Klimaanlagen: Konzepte, Anwendungen dezentrale Klimaanlagen: Konzepte, Anwendungen Kältetechnik zur Gebäudeklimatisierung, integrierte Kältetechnik Einbindung Regenerativer Energien bei Wärmepumpen/Photovoltaik, Kaltwassersätze, Split-Kälteanlagen Energieeffizienz von Klimasystemen
Literatur	 Recknagel, H.; Sprenger, E.; Albers: Taschenbuch für Heizung + Klimatechnik, aktuelle Ausgabe. Casties: Handbuch der Klimatechnik. Band 1 und 2, aktuelle Auflage. DIN, VDI, technische Regelwerke

Modulcode	Modulbezeichnung	Zuordnung
BNGE7210	Energiemeteorologie und Energiehandel	ВА
MEEM1010	Studiengänge • BA Nachhaltige Gebäude- und Energiesysteme • MA Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	MA

Modulverantwortlich	Prof. DrIng. Konstantin Lenz
Modulart	BA NGES: Pflichtmodul der Vertiefung Wirtschaft MA EEM: Pflichtmodul
Angebotshäufigkeit	Wintersemester
Regelbelegung/Empf. Semester	BA NGES: 7. Semester; MA EEM: 1. Semester
Credits (ECTS)	5
Leistungsnachweis	Prüfungsleistung
Angeboten in der Sprache	Deutsch
Voraussetzungen für dieses Modul	
Dieses Modul ist Voraussetzung für	
Moduldauer	1 Semester
Notwendige Anmeldung	
Verwendbarkeit des Moduls	

L	.ehrveranstaltung	Dozent/-in	Art	Teilnehm. (maximal)	Anz. Kurse	sws	ECTS	Work- load
	1 Energiemeteorologie und Energiehandel	Prof. DrIng. Konstantin Lenz	Seminar	30	1	4	5	150
					Summe	4	5	150
	Lehrleistung pro Semester in SWS							

	und Energiehandel	Konstantin Lenz	Seminar	30	1	4	5	150
					Summe	4	5	150
	Lehrleistung pro Semester in SWS							
Q	ualifikationsziele	Fach- und Method	denkompeten	Z				
		Die Studierenden w	verden in die L	age versetzt. We	ettermodel	le und W	/etterpro	anosen

sowie deren Grundlagen zu verstehen und die damit verbundenen Unsicherheiten einschätzen zu können. Sie erlangen die Kenntnis der Märkte, Produkte und Akteure des Energiehandels, erhalten das Verständnis für Prinzipien der strukturierten Beschaffung und des Portfoliomanagements und kennen die Marktmechanismen des nationalen und internationalen Energiehandels und der wichtigsten Einflussparameter. Die Studierenden kennen den Aufbau, die Funktionsweise und Möglichkeiten von Energiebörsen. Die Finanzierungsinstrumente für den Energiehandel und die Möglichkeiten des Risikomanagements sind bekannt. Daneben werden die wichtigsten Methoden der Marktpreisanalyse vermittelt.

Handlungskompetenz

Die Studierenden erlernen die Marktpreisanalyse und spielerisch das spekulative Handeln. Sie werden in die Lage versetzt, Zeitreihenanalysen energiewirtschaftlicher Daten in MS Excel durchzuführen sowie energiewirtschaftliche Daten und Statistiken zu finden, zu verstehen und auszuwerten.

Sozialkompetenz

Die Studierenden lernen Unternehmen und Bereiche kennen, die für sie potentielle spätere Betätigungsfelder sind. Die praktischen Übungen werden in kleinen Gruppen durchgeführt, was die Teamfähigkeit stärkt.

Vorleistung(en)	
Modulprüfung	Belegarbeit
Teilprüfung(en)	
Benotungsart	deutsche Bewertung von 1 bis 5
Wichtung für die	BA NGES: 2,9
Gesamtnote in %	MA EEM: 4,3

Modulcode	Modulbezeichnung	Zuordnung
BNGE7210	Energiemeteorologie und Energiehandel	ВА
MEEM1010	Studiengänge • BA Nachhaltige Gebäude- und Energiesysteme • MA Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	MA

Einzelveranstaltung	Energiemeteorologie und Energiehandel
Dozent/-in	Prof. DrIng. Konstantin Lenz

Workload der LV	150 Stunden	
	Vorlesungen	
Präsenzzeit	Seminare/Übungen	60 Stunden
	Übungen mit Laborbetrieb	
	Belegbearbeitung	30 Stunden
	Vor-/Nachbearbeitung	30 Stunden
Selbststudienzeit	Prüfungsvorbereitung	
	Selbststudienzeit	30 Stunden
	Sonstiges	

Inhalte	- die Energiewende und aktuelle Entwicklungen der Energiepolitik
	 Energiemeteorologie Grundlagen der Meteorologie und Hydrologie Wetterdaten, Wettermodelle und Wetterprognosen Lastprognosen und Erzeugungsprognosen erneuerbarer Energien
	 Energiehandel Preise und Preisbildung von Energieträgern und Emissionszertifikaten Grundlagen des Strom- und Gashandels finanzielle Abwicklung/Clearing
	 Grundlagen der Marktanalyse (technische Analyse, Fundamentalmodellierung, statistische Ansätze) Marktintegration und Direktvermarktung von erneuerbaren Energien Power Purchase Agreements (PPAs) virtuelle Kraftwerke
	 spekulativer Handel Portfoliomanagement und Risikomanagement Handel mit Emissionszertifikaten Optionen Kraftwerksoptimierung rechtliche Grundlagen des Energiehandels
	- MS Excel in der Energiewirtschaft · Handling, Analyse und Auswertung von Zeitreihen
Literatur	 Zenke, I.; Schäfer, R.: Energiehandel in Europa. 3. Auflage. Verlag C.H. Beck 2012. Schwintowski, HP. (Hrsg.): Handbuch Energiehandel. 3. Auflage. Verlag Erich Schmidt 2013.

Modulcode	Modulbezeichnung	Zuordnung
BNGE7220	Energie- und Umweltrecht	ВА
MEEM1030	Studiengänge • BA Nachhaltige Gebäude- und Energiesysteme • MA Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	MA

Modulverantwortlich	Studiengangsleitung
Modulart	BA NGES: Pflichtmodul der Vertiefung Wirtschaft MA EEM: Pflichtmodul
Angebotshäufigkeit	Wintersemester
Regelbelegung/Empf. Semester	BA NGES: 7. Semester; MA EEM: 1. Semester
Credits (ECTS)	5
Leistungsnachweis	Prüfungsleistung
Angeboten in der Sprache	Deutsch
Voraussetzungen für dieses Modul	
Dieses Modul ist Voraussetzung für	
Moduldauer	1 Semester
Notwendige Anmeldung	
Verwendbarkeit des Moduls	

Lehrveranstaltung	Dozent/-in	Art	Teilnehm. (maximal)	Anz. Kurse	sws	ECTS	Work- load
1 Energie- und Umwelt- recht	LA (Dr. Christoph Richter)	Seminar	30	1	4	5	150
				Summe	4	5	150
Lehrleistung pro Semester in SWS					4		

Qualifikationsziele

Fach- und Methodenkompetenz

Die Studierenden lernen die wesentlichen Aspekte des Umwelt- und Energierechts kennen. Dabei wird mit Blick auf die gesetzlich verankerten Ausbauziele und die hiermit verbundene herausgehobene Bedeutung ein besonderer Schwerpunkt auf die Erneuerbaren Energien gelegt. Den Studierenden wird zudem ein umfassender Überblick über die rechtlichen Voraussetzungen und relevanten Beziehungen bei der Planung und Errichtung von Energieerzeugungsanlagen sowie bei der Vermarktung und Nutzung von Energie vermittelt. Sie werden damit in die Lage versetzt, die Rechtsquellen des Umwelt- und Energierechts sowie die hinter ihnen stehenden gesetzgeberischen Wertungen zu verstehen und auf den Einzelfall anwenden zu können.

Handlungskompetenz

Den Studierenden werden die grundlegenden rechtlichen Beziehungen sowie daraus abzuleitende Rechte und Pflichten im Bereich des Umwelt- und Energierechts vermittelt. Sie werden dadurch in die Lage versetzt, die rechtliche Komplexität sowie die wirtschaftlichen Zusammenhänge der Energieversorgung zu erkennen und auf praktische Anwendungsfälle zu übertragen. Dabei geht es insbesondere um das Entwickeln eines Verständnisses für generelle Rechtspositionen im Verhältnis des Bürgers zum Staat sowie der Bürger untereinander und daraus abzuleitende Handlungsoptionen bei der Planung, Genehmigung und Vermarktung von Energieanlagen.

Sozialkompetenz

Die Studierenden lernen Grundzüge des Umwelt- und Energierechts kennen und können dadurch formale Rechtspositionen sowie politische und gesellschaftliche Entwicklungen und Konflikte objektiv beurteilen und rechtlich einordnen. Die Teamfähigkeit wird mittels Übungen und Fallbeispielen in kleinen Gruppen weiterentwickelt.

Vorleistung(en)	
Modulprüfung	Belegarbeit
Teilprüfung(en)	
Benotungsart deutsche Bewertung von 1 bis 5	
Wichtung für die BA NGES: 2,9	
Gesamtnote in %	MA EEM: 4,3

Modulcode	Modulbezeichnung	Zuordnung
BNGE7220	Energie- und Umweltrecht	ВА
MEEM1030	Studiengänge • BA Nachhaltige Gebäude- und Energiesysteme • MA Erneuerbare Energien Management Fakultät Gebäudetechnik und Informatik	MA

Einzelveranstaltung	Energie- und Umweltrecht
Dozent/-in	LA (Dr. Christoph Richter)

Workload der LV		150 Stunden	
	Vorlesungen		
Präsenzzeit	Seminare/Übungen	60 Stunden	
	Übungen mit Laborbetrieb		
	Belegbearbeitung	30 Stunden	
	Vor-/Nachbearbeitung	30 Stunden	
Selbststudienzeit	Prüfungsvorbereitung		
	Selbststudienzeit	30 Stunden	
	Sonstiges		

Inhalte Einführung · Überblick über die Energieversorgung in Deutschland · das Umwelt- und Energierecht als eigenständige Rechtsdisziplin · Rechtsquellen, Grundlagen, Überblick über tangierte Rechtsbereiche Grundzüge und Abgrenzung formelles und materielles Recht, öffentliches Recht und Zivilrecht, Rechtsbehelfe Umwelt- und Planungsrecht · Überblick zu verschiedenen Planungs- und Genehmigungsprozessen · Genehmigungsarten und -verfahren Bauplanungsrecht (BauGB) Bauordnungsrecht am Beispiel der Thüringer Bauordnung · Immissionsschutzrecht (Lärm, Luft, Schatten) · ggf. Grundzüge Naturschutz und Umweltverträglichkeit (UVP) sowie sonstige Belange (z.B. Denkmalschutz und Luftverkehr/Verteidigung) · sonstige Planungs- und Genehmigungsverfahren (FNP, Regionalplanung, ggf. Planfeststellung) Energierecht Überblick/Historie · Grundzüge des Energiewirtschaftsrechts (EnWG und dazugehörige

- Verordnungen)
- Energieversorgung (inkl. Netzbetrieb und Betreiberpflichten), Netzzugang und -anschluss, Messung, Grund- und Ersatzversorgung, Transparenzreglungen, Register(pflichten), Regulierung und Aufsicht, Rechtschutz
- Schwerpunkt: Erneuerbare-Energien-Gesetz (EEG) Historie, europarechtlicher Kontext, Grundzüge; gesetzliche Ansprüche, Netzanschluss und -ausbau sowie technische Anforderungen, Fördersystematik (Ausschreibung und Einspeisevergütung), Direktvermarktung, spezielle Regelungen für Wind, PV und Biomasse (ggf. Wasserkraft), EEG-Umlage
- · Steuerrecht (Stromsteuer und Energiesteuer [Überblick)])
- · kommunales Energierecht
- Zivilrecht
 - Rechtsverhältnisse (Grundeigentum, Sicherungsinstrumente, Vertragstypen im Überblick)
 - · Werkvertrags-, Miet-, Pachtrecht in Grundzügen
 - · Flächensicherung und -beschaffung (ggf. mit Exkurs: Enteignung [EnWG, FStrG, BbergG etc.]), Notwege- und Notleitungsrecht
 - Durchsetzung von Rechten/Abwehr von Ansprüchen

Literatur	- Maslaton (Hrsg.): Windenergieanlagen. 2. Auflage. Verlag C.H. Beck 2018.
	- Held, Wiesner: Energierecht und Energiewirklichkeit: Ein Handbuch für Ausbildung und Praxis nicht nur für Juristen. Verlag Energie & Management 2015.
	- Konstantin, P.: Praxisbuch Energiewirtschaft. 3. bearbeitete und aktualisierte Auf-
	lage. Berlin: Springer Verlag 2013.
	- Pfaffenberger, W.: Energiewirtschaft – Einführung in Theorie und Politik. 3. bear-
	beitete und aktualisierte Auflage. De Gruyter Oldenbourg 2012.